
i

Introduction to Software Reliability Risk Management

Norman F. Schneidewind

Norman F. Schneidewind, PhD
Naval Postgraduate School

2822 Racoon Trail
Pebble Beach, California 93953 USA

Internet (email): nschneid@nps.navy.mil

ii

Summary and Purpose

 This tutorial covers the following areas:

 - Relationship between requirements attributes and reliability and maintainability

 - Requirements attributes that are strongly related to the occurrence of defects and failures in the software

- Relationship between requirements attributes and software attributes like complexity and size

- Requirements attributes that are strongly related to the complexity and size of the software

- Feasibility of using requirements attributes as predictors of reliability and maintainability

- Static requirements change attributes, like the size of the change, for predicting reliability in execution
(e.g., failure occurrence) and maintainability of the code

- Requirements attributes that pose the greatest risk for reliability and maintainability

This tutorial is designed for practitioner software engineers and managers who want to learn how to
apply software reliability risk management in their organizations. Attendees will learn how to apply a
software reliability risk analysis to identify fault prone software.

Norman F. Schneidewind, PhD

Norman F. Schneidewind is Professor of Information Sciences and Director of the Software Metrics
Laboratory at the Naval Postgraduate School. Dr. Schneidewind is a Fellow of the IEEE, elected in 1992
for "contributions to software measurement models in reliability and metrics, and for leadership in
advancing the field of software maintenance". He is the developer of the Schneidewind software reliability
model which is used by NASA to assist in the prediction of software reliability of the Space Shuttle, by the
Naval Surface Warfare Center for Trident software reliability prediction, and by the Marine Corps Tactical
Systems Support Activity for distributed system software reliability assessment and prediction. This model
is one of the models recommended by the American National Standards Institute and the American
Institute of Aeronautics and Astronautics Recommended Practice for Software Reliability. He has
published widely in the fields of software reliability and metrics.

Table of Contents
1. Introduction……………………………………………………………………………………………….1
2. Objectives………………………………………………………………………………………………....2
3. Contemporary Software Measurement Projects…………...……………………………………………..2
4. Technical Approach …………………………...………………………………………………………….3
5.Risk Factors ………………………………………….…………………………………………………....4
6. Results……………………………………………………………………………………………………..6
7. Conclusions………………………………………………………………………………………………..9
8. References…………………………………………………………………………………………………9
9.Bibliography……………………………………………………………………………………………...10
 Figures 1and 2…………………………………………………………………………………………….11
 Figures 3 and 4……………………………………………………………………………………………12
 Figures 5 and 6……………………………………………………………………………………………13

 1

1. INTRODUCTION

 While software design and code metrics have enjoyed
some success as predictors of software quality attributes
such as reliability [5, 6, 7, 8, 11, 13, 14], the measurement
field is stuck at this level of achievement. If measurement
is to advance to a higher level, we must shift our attention
to the front-end of the development process, because it is
during system conceptualization that errors in specifying
requirements are inserted into the process and adversely
affect our ability to maintain the software. A requirements
change may induce ambiguity and uncertainty in the
development process that cause errors in implementing the
changes. Subsequently, these errors propagate through later
phases of development and maintenance. These errors may
result in significant risks associated with implementing the
requirements. For example, reliability risk (i.e., risk of
faults and failures induced by changes in requirements)
may be incurred by deficiencies in the process (e.g., lack of
precision in requirements). Although requirements may be
specified correctly in terms of meeting user expectations,
there could be significant risks associated with their
implementation. For example, correctly implementing user
requirements could lead to excessive system size and
complexity with adverse effects on reliability and
maintainability or there could be a demand for project
resources that exceeds the available funds, time, and
personnel skills. Interestingly, there has been considerable
discussion of project risk (e.g., the consequences of cost
overrun and schedule slippage) in the literature [1] but not
a corresponding attention to reliability and maintainability
risk.

Risk in the Webster's New Universal Unabridged

Dictionary is defined as "the chance of injury; damage, or
loss" [21]. Some authors have extended the dictionary
definition as follows: "Risk Exposure=Probability of an
Unsatisfactory Outcome*Loss if the Outcome is
Unsatisfactory" [1]. Such a definition is frequently applied
to the risks in managing software projects such as budget
and schedule slippage. In contrast, our application of the
dictionary definition pertains to the risk of executing the
software of a system where there is the chance of injury
(e.g., crew injury or fatality), damage (e.g., destruction of
the vehicle), or loss (e.g., loss of the mission) if a serious
software failure occurs during a mission. We use risk
factors to indicate the degree of risk associated with such
an occurrence.

The generation of requirements is not a one-time activity.
Indeed, changes to requirements can occur during
maintenance. When new software is developed or existing
software is changed in response to new and changed
requirements, respectively, there is the potential to incur
reliability and maintainability risks. Therefore, in assessing
the effects of requirements on reliability and
maintainability, we should deal with changes in
requirements throughout the life cycle.

In addition to the relationship between requirements
and reliability and maintainability there are the

intermediate relationships between requirements and
software metrics (e.g., size, complexity) and between
metrics and reliability and maintainability. These
relationships may interact to put the reliability and
maintainability of the software at risk because the
requirements changes may result in increases in the size
and complexity of the software that may adversely affect
reliability and maintainability. The Space Shuttle flight
software is used as an example of these interactions. For
example, the number of iterations of a requirements change
-- the "modification level" – in the Space Shuttle is
inversely related to reliability. That is, if many revisions of
a requirement are necessary before it is approved, this is
indicative of a requirement that is hard to understand and
implement safely -- a risk that directly impacts reliability.
At the same time, this complex requirement will affect the
size and complexity of the code that will, in turn, have
deleterious effects on reliability and maintainability.

Acronyms

CRs: Change Requests
DRs: Discrepancy Reports
MW: Man Weeks
SLOC: Source Lines Of Code

Assumption

There is a risk to reliability involved in making changes to
the software.

Definitions

Alpha: Level of s-significance in statis tical tests.

Categorical Data Analysis: A categorical variable is one for
which the measurement scale consists of a set of categories.

Change History Line Count: Number of lines in the change
record section of a module in an Operational Increment.

Change Request Count: Number of Change Requests per
module in an Operational Increment.

Critical Value: A discriminant that distinguishes high
quality from low quality software.

Cycle Count: Number of cycles per module in an
Operational Increment.

Discrepancy Report Count: Number of Discrepancy
Reports per module in an Operational Increment.

Discriminant: A factor that serves to classify entities into
categories (e.g., software requirements complexity exceeds
threshold, thus classifying the change as “high risk”).

Executable Statement Count: Number of source language
statements that execute in a module of an Operational
Increment.

 2

Node Count: Number of nodes in a module’s control graph
in an Operational Increment.

Non-Commented Lines Of Code Count: Number of source
lines of code, excluding comments, per module in an
Operational Increment.

Operational Increment (OI): A software system comprised
of modules and configured from a series of builds to meet
Space Shuttle mission functional requirements.

Operand Count: Number of unique operands per module in
an Operational Increment.

Operator Count: Number of unique operators per module in
an Operational Increment.

Path Count: Number of paths per module in an Operational
Increment.

Rank Correlation: A type of correlation analysis in which
the ranks of quantities are used rather than their values.

Requirements Attributes: Characteristics of requirements
(e.g., complexity, size, criticality).

s-significant: statistically significant.

SLOC Changed: Number of source lines of code changed
per module in an Operational Increment.

Statement Count: Number of statements per module in an
Operational Increment.

Severity Codes:

1. Severe Vehicle or Crew Performance Implications.
2. Affects Ability to Complete Mission (Not a safety issue).
3. Workaround Available, Minimal Effect on Procedures.
4. Insignificant (paperwork, etc.).
5. Not Visible to User.

2. OBJECTIVES

Given the lack of emphasis in software measurement

on the critical role of requirements, it is imp ortant to
explore the following issues:

 - What is the relationship between requirements attributes
and reliability and maintainability? That is, are there
requirements attributes that are strongly related to the
occurrence of defects and failures in the software?

- What is the relationship between requirements attributes
and software attributes like complexity and size? That is,
are there requirements attributes that are strongly related to
the complexity and size of software?

- Is it feasible to use requirements attributes as predictors of
reliability and maintainability? That is, can static
requirements change attributes like the size of the change

be used to predict reliability in execution (e.g., failure
occurrence) and the maintainability of this code?

- Which requirements attributes pose the greatest risk to
reliability and maintainability?

3. CONTEMPORARY SOFTWARE MEASUREMENT

PROJECTS

A number of useful reliability and maintenance

measurement projects have been reported in the literature.
Much of the research and literature in software metrics
concerns the measurement of code characteristics [10, 12].
This is satisfactory for evaluating product quality and
process effectiveness once the code is written. However, if
organizations use measurement plans that are limited to
measuring code, these plans will be deficient in the
following ways: incomplete, lack coverage (e.g., no
requirements analysis and design), and start too late in the
process. For a measurement plan to be effective, it must
start with requirements and continue through to operation
and maintenance. Since requirements characteristics
directly affect code characteristics and hence reliability and
maintainability, it is important to assess their impact when
requirements are specified.

Briand, et al, developed a process to characterize

software maintenance projects [2]. They present a
qualitative and inductive methodology for performing
objective project characterizations to identify maintenance
problems and needs. This methodology aids in determining
causal links between maintenance problems and flaws in
the maintenance organization and process. Although the
authors have related ineffective maintenance practices to
organizational and process problems, they have not made a
linkage to risk assessment.

Pearse and Oman applied a maintenance metrics index

to measure the maintainability of C source code before and
after maintenance activities [15]. This technique allowed
the project engineers to track the "health" of the code as it
was being maintained. Maintainability is assessed but not
in terms of risk assessment.

Pigoski and Nelson collected and analyzed metrics on

size, trouble reports, change proposals, staffing, and trouble
report and change proposal completion times [17]. A major
benefit of this project was the use of trends to identify the
relationship between the productivity of the maintenance
organization and staffing levels. Although productivity was
addressed, risk assessment was not considered.

Sneed reengineered a client maintenance process to

conform to the ANSI/IEEE Standard 1219, Standard for
Software Maintenance [19]. This project is a good example
of how a standard can provide a basic framework for a
process and can be tailored to the characteristics of the
project environment. Although applying a standard is an
appropriate element of a good process, risk assessment was
not addressed.

 3

Stark collected and analyzed metrics in the categories
of customer satisfaction, cost, and schedule with the
objective of focusing management's attention on
improvement areas and tracking improvements over time
[20]. This approach aided management in deciding whether
to include changes in the current release, with possible
schedule slippage, or include the changes in the next
release. However, the author did not relate these metrics to
risk assessment.

An indication of the back seat that software risk

assessment takes to hardware, Fragola reports on
probabilistic risk management for the Space Shuttle.
Interestingly, he says: “The shuttle ris k is embodied in the
performance of its hardware, the careful preparation
activities that its ground support staff take between flights
to ensure this performance during a flight, and the
procedural and management constraints in place to control
their activities.” [4]. There is not a word in this statement or
in his article about software! Another hardware-only risk
assessment is by Maggio, who says: “The current effort is
the first integrated quantitative assessment of the risk of the
loss of the shuttle vehicle from 3 seconds prior to liftoff to
wheel-stop at mission end.” Again, not a word about
software [9].

Pfleeger lays out a roadmap for assessing project risk

that includes risk prioritization [16], a step that we address
with the degree of s-confidence in the statistical analysis of
risk (see section 6).

4. TECHNICAL APPROACH

By retrospectively analyzing the relationship between

requirements and reliability and maintainability, we will
identify those risk factors that are associated with reliability
and maintainability and we will prioritize them based on
the degree to which the relationship is s-significant. In
order to quantify the effect of a requirements change, we
will use various risk factors that are defined as the attribute
of a requirement change that can induce adverse effects on
reliability (e.g., failure incidence), maintainability (e.g.,
size and complexity of the code), and project management
(e.g. personnel resources). This process is illustrated in
Figure 1. Various examples of Space Shuttle risk factors
are shown in section 5.

Table 1 shows the Change Request Hierarchy of the

Space Shuttle, involving change requests (i.e., a request for
a new requirement or modification of an existing
requirement), discrepancy reports (i.e., reports that
document deviations between specified and observed
software behavior), and failures. We will analyze
categories 1 versus 2.1 and 1 versus 2.2.3 with respect to
risk factors as discriminants of the categories.

Table 1: Change Request Hierarchy

Change Requests (CRs)

1. No Discrepancy Reports (i.e., CRs with no DRs)

 2. Discrepancy Reports

2.1 No failures (i.e., CRs with DRs only)

2.2 Failures

2.2.1 Pre-release failures

2.2.2 Post-release failures

2.2.3 Exclusive OR of 2.2.1 and 2.2.2 (i.e., CRs with
failures)

4.1 Categorical Data Analysis

Using the null hypothesis, Ho: A risk factor is not a
discriminant of reliability and maintainability versus the
alternate hypothesis H1: A risk factor is a discriminant of
reliability and maintainability, we will use categorical data
analysis to test the hypothesis. A similar hypothesis will be
used to assess whether risk factors can serve as
discriminants of metrics characteristics. We will use the
requirements, requirements risk factors, reliability, and
metrics data from the Space Shuttle “Three Engine Out”
software (abort sequence invoked when three engines are
lost) to test our hypotheses. Samples of these data are
shown below.

- Pre-release and post release failure data from the Space
Shuttle from 1983 to the present. An example of post-
release failure data is shown in Table 2.

 4

Table 2: Example Failure Data
Failure Found On

 Operational Increment
Days from Release

When Failure Occurred
Discrepancy

Report #
Severity Failure Date Release Date Module in

Error
Q 75 1 2 05-19-97 03-05-97 10

- Risk factors for the Space Shuttle Three Engine Out Auto
Contingency software. This software was released to

NASA by the developer on 10/18/95. An example of a
partial set of risk factor data is shown in Table 3.

Table 3: Example Risk Factor Data

Change
Request
Number

SLOC
Changed

Complexity
Rating of
Change

Criticality
of Change

Number of
Principal

Functions
Affected

Number of
Modifications

Of Change
Request

Number of
Requirements

Issues

Number of
Inspections

Required

Manpower
Required to

Make
Change

A 1933 4 3 27 7 238 12 209.3 MW

- Metrics data for 1400 Space Shuttle modules, each with
26 metrics. An example of a partial set of metric data is
shown in Table 4.

Table 4: Example Metrics Data

Module Operator
Count

Operand
Count

Statement
Count

Path Count Cycle
Count

Discrepancy
Report Count

Change Request
Count

10 3895 1957 606 998 4 14 16

Table 5 shows the definition of the Change Request

samples that are used in the analysis. Sample sizes are
small due to the high reliability of the Space Shuttle.
However, sample size is one of the parameters accounted
for in the statistical tests that produced s-significant results
in certain cases (see section 6).

Table 5: Definition of Samp les

Sample

Size

Total CRs 24
Instances of CRs with no DRs 12
Instances of CRs with DRs only 9
Instances of CRs with failures 7
Instances of CRs with modules
that caused failures

7

CRs can have multiple instances of DRs, failures,
and modules that caused failures.
CR: Change Request. DR: Discrepancy Report.

To minimize the confounding effects of a large number of
variables that interact in some cases, a statistical categorical
data analysis will be performed incrementally. We will use
only one category of risk factor at a time to observe the
effect of adding an additional risk factor on the ability to
correctly classify change requests that have discrepancy
reports (i.e., a report that documents deviations between
specified and observed software behavior) or failures and
those that do not. The Mann-Whitney test for difference in
medians between categories will be used because no
assumption need be made about s-statistical distribution; in
addition, some risk factors are ordinal scale quantities (e.g.,
modification level), for which the median is an appropriate

statistic. Furthermore, because some risk factors are ordinal
scale quantities, rank correlation will be used to check for
risk factor dependencies.

 5. RISK FACTORS

One of the software maintenance problems of the

NASA Space Shuttle Flight Software organization is to
evaluate the risk of implementing requirements changes.
These changes can affect the reliability and maintainability
of the software. To assess the risk of change, the software
development contractor uses a number of risk factors,
which are described below. The risk factors were identified
by agreement between NASA and the development
contractor based on assumptions about the risk involved in
making changes to the software. This formal process is
called a risk assessment. No requirements change is
approved by the change control board without an
accompanying risk assessment. During risk assessment, the
development contractor will attempt to answer such
questions as: “Is this change highly complex relative to
other software changes that have been made on the Space
Shuttle?” If this were the case, a high-risk value would be
assigned for the complexity criterion. To date this
qualitative risk assessment has proven useful for
identifying possible risky requirements changes or,
conversely, providing assurance that there are no
unacceptable risks in making a change. However, there has
been no quantitative evaluation to determine whether, for
example, high risk factor software was really less reliable
and maintainable than low risk factor software. In addition,
there is no model for predicting the reliability and
maintainability of the software, if the change is
implemented. We will address both of these issues.

 5

Requirements attributes like completeness,

consistency, correctness, etc. could be used as risk factors
[3]. While these are useful generic concepts, they are
difficult to quantify. Although some of the following risk
factors also have qualitative values assigned, there are a
number of quantitative risk factors, and many of the risk
factors deal with the execution behavior of the software
(i.e., reliability), which is of interest.

5.1 Space Shuttle Flight Software Requirements Change
Risk Factors

The following are the definitions of the nineteen risk
factors, where we have placed the risk factors into
categories and have provided interpretations of the question
the risk factor is designed to answer. If the answer to a
yes/no question is "yes" or if the answer to a question that
requires an estimate is an anomalous value, it means this is
a high-risk change with respect to the given risk factor.

 For each risk factor, it is indicated whether there is an
s-significant relationship between it and reliability and
maintainability for the software version analyzed. The
details of the findings are shown in the section 6. In many
instances, there is insufficient data to do the analysis
because in these cases the risk factor evaluation forms are
incomplete. These cases are indicated below. Only those
risk factors where there is sufficient data (i.e. data from
seven or more CRs) and the results are s-significant are
shown. The names of the risk factors used in the analysis
are given in quotation marks.

Complexity Factors

o Qualitative assessment of complexity of change (e.g.,
very complex); “complexity”. Not s-significant.

 - Is this change highly complex relative to other
software changes that have been made on the Space
Shuttle?

o Number of modifications or iterations on the proposed
change; “mods”. s-significant.

- How many times must the change be modified or
presented to the change control board before it is
approved?

Size Factors

 o Number of lines of code affected by the change; “sloc”.
s-significant.

 - How many lines of code must be changed to
implement the change request?

o Number of modules changed; “mod chg”. Not s-
significant.

- Is the number of changes to modules excessive?

Criticality of Change Factors

o Criticality of function added or changed by the change
request; “crit func” (insufficient data)

- Is the added or changed functionality critical to mission
success?

o Whether the software change is on a nominal or
off-nominal program path (i.e., exception condition); “off
nom path”. (insufficient data)

 - Will a change to an off-nominal program path affect
the reliability of the software?

Locality of Change Factors

o The area of the program affected (i.e., critical area such
as code for a mission abort sequence); “critic area”
(insufficient data)

 - Will the change affect an area of the code that is
critical to mission success?

o Recent changes to the code in the area affected by the
requirements change; “recent chgs” (insufficient data)

 - Will successive changes to the code in one area lead
to non-maintainable code?

o New or existing code that is affected; “new\exist code”
(insufficient data)

 - Will a change to new code (i.e., a change on top of a
change) lead to non-maintainable code?

o Number of system or hardware failures that would have
to occur before the code that implements the requirement
would be executed; “fails ex code” (insufficient data)

- Will the change be on a path where only a small number
of system or hardware failures would have to occur before
the changed code is executed ?

Requirements Issues and Functions Factors

o Number and types of other requirements affected by the
given requirement change (requirements issues); “other
chgs” (insufficient data)

 - Are there other requirements that are going to be
affected by this change? If so, these requirements will have
to be resolved before implementing the given requirement.

o Number of possible conflicts among requirements
(requirements issues); “issues” s-significant.

- Will this change conflict with other requirements
changes (e.g., lead to conflicting operational scenarios)

 6

o Number of principal software functions affected by the
change; “prin funcs” Not s-significant.

- How many major software functions will have to be

changed to make the given change?

Performance Factors

o Amount of memory space required to implement the
change; “space” s-significant.

- Will the change use memory to the extent that other
functions will not have sufficient memory to operate
effectively?

o Effect on CPU performance; “cpu” (insufficient data)

- Will the change use CPU cycles to the extent that other
functions will not have sufficient CPU capacity to operate
effectively?

Personnel Resources Factors

o Number of inspections required to approve the change;
“inspects” Not s-significant.

 - Will the number of requirements inspections lead to
excessive use of personnel resources?

o Manpower required to implement the change;
“manpower”. Not s-significant.

- Will the manpower required to implement the software
change be significant?

o Manpower required to verify and validate the
correctness of the change; “cost” Not s-significant.

- Will the manpower required to verify and validate the
software change be significant?

o Number of tests required to verify and validate the
correctness of the change; “tests” Not s-significant.

- Will the number of tests required to verify and validate
the software change be significant?

6. RESULTS

This section contains the results of performing the

following statistical analyses (a, b, and c) shown in Tables
6. 7, and 8, respectively. This process is illustrated in
Figure 2. Only those risk factors where there is sufficient
data and the results are s-significant, as indicated in section
5, are shown. Some quantitative risk factors (e.g., size of
change) are s- significant; no non-quantitative risk factors
(e.g., complexity) are s-significant.

a. Categorical data analysis on the relationship between
CRs with no DRs vs. CRs with failures, using the Mann-
Whitney Test; and categorical data analysis on the

relationship between CRs with no DRs vs. CRs with DRs
only, using the Mann-Whitney Test

b. Dependency check on risk factors, using rank correlation
coefficients; and

c. Identification of modules that caused failures as a result
of the CR, and their metric values.

6.1Categorical Data Analysis

Of the original nineteen risk factors, only four survived

as being s-significant (alpha ≤ .05); seven are not s-
significant; and eight had insufficient data to make the
analysis (see section 5). As Table 6 shows, there are s-
significant results for CRs with no DRs vs. CRs with
failures for the risk factors “mods”, “sloc”, “issues”, and
“space”. There are also s-significant results for CRs with no
DRs vs. CRs with DRs only for the risk factors “issues” and
“space”. Since the value of alpha represents the level of s-
significance of a risk factor in predicting reliability, we use
it in Table 6 as a means to prioritize the use of risk factors,
with low values meaning high priority. The priority order
is: “space”, “issues”, “mods”, and “sloc”.

The s-significant risk factors would be used to predict
reliability and maintainability problems for this set of data
and this version of the software. The result regarding
“mods” does confirm the software developer’s view that
this is an important risk factor. This is the case because if
there are many iterations of the change request, it implies
that it is complex and difficult to understand. Therefore, the
change is likely to lead to reliability and maintainability
problems. It is not surprising that the size of the change
“sloc” is s-significant because our previous studies of
Space Shuttle metrics have shown it to be important [18].
Conflicting requirements “issues” could result in reliability
and maintainability problems when the change is
implemented. The on-board computer memory required to
implement the change “space” is critical to reliability
because unlike commercial systems, the Space Shuttle does
not have the luxury of large physical memory, virtual
memory, and disk memory to hold its programs and data.
Any increased requirement on its small memory to
implement a change comes at the price of demands from
competing functions.

In addition to identifying predictive risk factors, we
must also identify thresholds for predicting when the
number of failures would become excessive (i.e., rise
rapidly with the risk factor). An example is shown in
Figure 3 where cumulative failures are plotted against
cumulative memory space. The figure shows that when
“space” reaches 2688 words, failures reach 3 (obtained by
querying the data point) and climbs rapidly thereafter.
Thus, a space count of 2688 would be the best estimate of
the threshold to use in controlling the quality of the next
version of the software. Similarly, Figure 4 shows that
when “issues” reach a threshold of 286, failures reach 3 and
rise rapidly thereafter. In contrast, Figure 5 shows no
dramatic increase in failures with increase in “mods”; the

 7

reason for this anomaly is that there is less variability in the
“mods” data than for the other three s-significant risk
factors. Figure 6 shows that failures increase steeply when
“sloc” reaches 1965.This process would be repeated across
versions with the threshold being updated as more data is
gathered. Thresholds would be identified for each risk
factor in Table 6. This would provide multiple alerts for the
quality of the software going bad (i.e., the reliability and
maintainability of the software would degrade as the
number of alerts increases).

6.2 Dependency Check on Risk Factors

 In order to check for possible dependencies among risk
factors that could confound the results, rank correlation
coefficients are computed in Table 7. Using an arbitrary
threshold of ≥.7, the results indicate s-significant
dependencies between “issues” and “mod” and between
“issues” and “sloc” for CRs with no DRs. That is, as the
number of conflicting requirements increases, the number
of modifications and size of the change request increases.
In addition, there is an s-significant dependency between
“issues” and “space” for CRs with failures. That is, as the
number of conflicting requirements increases, the memory
space required to implement the change request increases.

6.3 Identification of Modules that Caused Failures

 Requirements change requests may occur on modules
with metric values that exceed the critical values. In these
cases, there is s-significant risk in making the change
because such modules could fail. Table 8 shows modules
that caused failures, as the result of the CRs, had metric
values that far exceed the critical values. The latter were
computed in [18]. A critical value is a discriminant that
distinguishes high quality from low quality software. A
module with metric values exceeding the critical values is
predicted to cause failures.

Although the sample sizes are small, due to the high
reliability of the Space Shuttle, the results consistently
show that modules with excessive size and complexity lead
to failures. Not only will the reliability be low but this
software will also be difficult to maintain. The application
of this information is that there is a high degree of risk
when changes are made to software that has the metric
characteristics shown in the table. Thus, these
characteristics should be considered when making the risk
analysis.

8

Table 6: S-significant Results (alpha ≤ .05). CRs with no DRs vs. CRs. with
failures. Mann-Whitney Test

Risk Factor

Alpha
Median Value

CRs with no DRs

Median Value
CRs with failures

mods .0168 .50 4

sloc .0185 10 100

issues .0038 2 16

space .0036 4 231.5

CRs with no DRs vs. CRs with DRs only.

Risk Factor

Alpha

Median Value
CRs with no DRs

Median Value
CRs with DRs

only
issues .0386 2 14

space .0318 4 111.50

mods: Number of modifications of the proposed change.
sloc: Number of lines of code affected by the change.
issues: Number of possible conflicts among requirements.
space: Amount of memory space required to implement the change (full words).

Table 7: Rank Correlation Coefficients of Risk Factors
 CRs with no DRs

 mods sloc issues space
mods .230 .791 .401
sloc .230 .708 .317

issues .791 .708 .195
space .401 .317 .195

CRs with failures
 mods sloc issues space

mods .543 -.150 .378
sloc .543 .286 .452

issues -.150 .286 .886
space .378 .452 .886

Table 8: Selected Risk Factor Module Characteristics
Change
Request

Module Metric Metric Critical
Value

Metric Value

A 1 change history line count in
module listing

63 558

A 2 non-commented lines of code
count

29 408

B 3 executable statement count 27 419
C 4 unique operand count 45 83
D 5 unique operator count 9 33
E 6 node count (in control graph) 17 66

All of the above metrics exceeded the critical values for all of the above Change Requests.

9

7. CONCLUSIONS

Risk factors that are s-significant can be used to make
decisions about the risk of making changes. These changes
impact the reliability and maintainability of the software.
Risk factors that are not s-significant should not be used;
they do not provide useful information for decision-making
and cost money and time to collect and process. The
amount of memory space required to implement the change
(“space”), the number of requirements issues (“issues”), the
number of modifications (“mods”), and the size of the
change (“sloc”), were found to be s-significant, in that
priority order. In view of the dependencies among these
risk factors, “space” would be the choice if the using
organization could only afford a single risk factor. We also
showed how risk factor thresholds are determined for
controlling the quality of the next version of the software.

S-significant results were found for CRs with no DRs

vs. CRs with failures; in addition, s-significant results were
found for CRs with no DRs vs. CRs with DRs only.

Metric characteristics of modules should be considered

when making the risk analysis because metric values that
exceed the critical values are likely to result in unreliable
and non-maintainable software.

This methodology can be generalized to other risk
assessment domains, but the specific risk factors, their
numerical values, and statistical results may vary.

8. REFERENCES

1] Barry W. Boehm, "Software Risk Management:
Principles and Practices", IEEE Software, Vol. 8, No. 1,
January 1991, pp. 32-41.

[2] Lionel C. Briand, Victor R. Basili, and Yong-Mi Kim,
"Change Analysis Process to Characterize Software
Maintenance Projects", Proceedings of the International
Conference on Software Maintenance, Victoria, British
Columbia, Canada, September 19-23, 1994, pp. 38-49.

[3] Alan Davis, Software Requirements: Analysis and
Specifications, Prentice-Hall, Englewood Cliffs, NJ, 1990.

[4] Joseph R. Fragola, “Space Shuttle Program Risk
Management”, Proceedings Annual Reliability and
Maintainability Symposium, 1996, pp. 133-142.

[5] Taghi M. Khoshgoftaar and Edward B. Allen,
"Predicting the Order of Fault-Fault-Prone Modules in
Legacy Software", Proceedings of the Ninth International
Symposium on Software Reliability Engineering,
November 4-7, 1998, Paderborn, Germany, pp. 344-353.

[6] Taghi M. Khoshgoftaar, Edward B. Allen, Robert
Halstead, and Gary P. Trio, "Detection of Fault-Prone
Software Modules During a Spiral Life Cycle",
Proceedings of the International Conference on Software

Maintenance, November 4-8, 1996, Monterey, California,
pp. 69-76.

[7] Taghi M. Khoshgoftaar, Edward B. Allen, Kalai
Kalaichelvan, and Nishith Goel, "Early Quality Prediction:
A Case Study in Telecommunications", IEEE Software,
Vol. 13, No. 1, January 1996, pp. 65-71.

[8] D. Lanning and T. Khoshgoftaar, "The Impact of
Software Enhancement on Software Reliability", IEEE
Transactions on Reliability, Vol. 44, No. 4, December
1995, pp. 677-682.

[9] Gaspare Maggio, “Space Shuttle Probabilistic Risk
Assessment Methodology and Application”, Proceedings
Annual Reliability and Maintainability Symposium, 1996,
pp. 121-132.

[10] Sebastian G. Elbaum and John C. Munson, "Getting a
Handle on the Fault Injection Process: Validation of
Measurement Tools", Proceedings of the Fifth International
Software Metrics Symposium, November 20-21, 1998,
Bethesda, Maryland, pp. 133-141.

[11] John C. Munson and Darrell S. Werries, "Measuring
Software Evolution", Proceedings of the Third
International Software Metrics Symposium, March 25-26,
1996, Berlin, Germany, pp. 41-51.

[12] Allen P. Nikora, Norman F. Schneidewind, and John
C. Munson, IV&V Issues in Achieving High Reliability
and Safety in Critical Control Software, Final Report, Jet
Propulsion Laboratory, National Aeronautics and Space
Administration, Pasadena, California, January 19, 1998.

[13] Magnus C. Ohlsson and Claes Wohlin, "Identification
of Green, Yellow, and Red Legacy Components",
Proceedings of the International Conference on Software
Maintenance, November 16-20, 1998, Bethesda, Maryland,
pp. 6-15.

[14] Niclas Ohlsson and Hans Alberg, "Predicting Fault-
Prone Software Modules in Telephone Switches", IEEE
Transactions on Software Engineering, Vol. 22, No. 12,
December 1996, pp. 886-894.

[15] Troy Pearse and Paul Oman, "Maintainability
Measurements on Industrial Source Code Maintenance
Activities", Proceedings of the International Conference on
Software Maintenance, Opio (Nice), France, October 17-
20, 1995, pp. 295-303.

[16] Shari Lawrence Pfleeger, “Assessing Project Risk”,
Software Tech News, DoD Data Analysis Center for
Software, vol.2, no. 2, pp. 5-8.

10

[17] Thomas M. Pigoski and Lauren E. Nelson, "Software
Maintenance Metrics: A Case Study", Proceedings of the
International Conference on Software Maintenance,
Victoria, British Columbia, Canada, September 19-23,
1994, pp. 392-401.

[18] Norman F. Schneidewind, "Software quality control
and prediction model for maintenance", Annals of Software
Engineering, Baltzer Science Publishers, Volume 9 (2000),
May 2000, pp. 79-101.

[19] Harry Sneed, "Modelling the Maintenance Process at
Zurich Life Insurance", Proceedings of the International
Conference on Software Maintenance, Monterey,
California, November 4-8, 1996, pp. 217-226.

[20] George E. Stark, "Measurements for Managing
Software Maintenance", Proceedings of the International
Conference on Software Maintenance, Monterey,
California, November 4-8, 1996, pp. 152-161.

[21] Webster's New Universal Unabridged Dictionary,
Second Edition, Simon and Shuster, New York, 1979.

9. BIBLIOGRAPY

1. Recommended Practice for Software Reliability, R-
013-1992, American National Standards Institute/American
Institute of Aeronautics and Astronautics, 370 L'Enfant
Promenade, SW, Washington, DC 20024, 1993.

2. C. Billings, et al, "Journey to a Mature Software
Process", IBM Systems Journal, Vol. 33, No. 1, 1994, pp.
46-61.

3. W. Farr and O. Smith, Statistical Modeling and
Estimation of Reliability Functions for Software (SMERFS)
Users Guide, NAVSWC TR-84-373, Revision 3, Naval
Surface Weapons Center, Revised September 1993.

4. Capers Jones, Capers, Assessment and Control of
Software Risks, Yourdon Press, Prentice Hall, Upper
Saddle River, NJ, 1994.

5. T. Keller and N. Schneidewind, A Successful
Application of Software Reliability Engineering for the
NASA Space Shuttle, Software Reliability Engineering
Case Studies, International Symposium on Software
Reliability Engineering, November 3, Albuquerque, New
Mexico, November 4, 1997, pp. 71-82.

6. T. Keller, N. Schneidewind, and P. Thornton
"Predictions for Increasing Confidence in the Reliability of
the Space Shuttle Flight Software", Proceedings of the
AIAA Computing in Aerospace 10, San Antonio, TX,
March 28, 1995, pp. 1-8.

7. Dale Walter Karolak, Software Engineering Risk
Management, IEEE Computer Society Press, Los Alamitos,
CA, 1996.

8. N. Leveson, "Software Safety: What, Why, and How",
ACM Computing Surveys, Vol. 18, No. 2, June 1986, pp.
125-163.

9. M. Lyu (Editor-in-Chief), Handbook of Software
Reliability Engineering, IEEE Computer Society Press, Los
Alamitos, CA and McGraw-Hill, New York, NY, 1995.

10. J. Musa, et al, Software Reliability: Measurement,
Prediction, Application, McGraw-Hill, New York, 1987.

11. A. Nikora, N. Schneidewind, and J. Munson, "Practical
Issues In Estimating Fault Content And Location In
Software Systems", Proceedings of the AIAA Space
Technology Conference and Exposition, Albuquerque, NM,
Sep 29-30, 1999.

12. A. Nikora, N. Schneidewind, and J. Munson, "IV&V
Issues in Achieving High Reliability and Safety in Critical
Control System Software" Proceedings of the Third
International Society of Science and Applied Technologies
Conference on Quality in Design, Anaheim, California,
March 12-14, 1997, pp. 25-30.

13. N. Schneidewind, "Measuring and Evaluating
Maintenance Process Using Reliability, Risk, and Test
Metrics", IEEE Transactions on Software Engineering,
Vol. 25, No. 6, November/December 1999, pp. 768-781.

14. N. Schneidewind, "Software Validation for Reliability",
Wiley Encyclopedia of Electrical and Electronics
Engineering, John G. Webster, editor, John Wiley & Sons,
Inc., Vol.19, 1999, pp. 607-618.

15. N. Schneidewind, "Reliability Modeling for Safety
Critical Software", IEEE Transactions on Reliability, Vol.
46, No.1, March 1997, pp.88-98.

16. N. Schneidewind, "Software Reliability Model with
Optimal Selection of Failure Data", IEEE Transactions on
Software Engineering, Vol. 19, No. 11, November 1993,
pp. 1095-1104.

17. N. Schneidewind and T. Keller, "Application of
Reliability Models to the Space Shuttle", IEEE Software,
Vol. 9, No. 4, July 1992 pp. 28-33.

11

Requirements
Change
Request

Analyze
Risk

Factors

Affect
Reliability

Y Mitigate Risk
(e.g., Reduce
Complexity)

Implement
Requirement

N

Check for S-Significant Relationships between
Risk Factors and Failure Occurrence and
Metric Characteristics

Figure 1: Risk Analysis Process

Risk Factors

Figure 2: S-Significant Risk Factors

Mann-Whitney
Test

alpha
<=.05

S-Significant
Risk Factors

Y

Metric Value
>Critical Value

Prioritize
Risk Factors

Risk Factor
Dependency

Check

correlation
>=.70

Reprioritize
Risk Factors

Y

Likely Module
Failure

N

Module
Metrics

Y

N

Unlikely
Module Failure

N

12

Figure 4: Failures vs. Issues

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350 400

Cumulative Issues

Figure 3: Failures vs. Memory Space

0

1

2

3

4

5

6

7

8

9

10

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Cumulative Memory Space (words)

13

Figure 5: Failures vs. Mods

0

2

4

6

8

10

0 5 10 15 20 25 30 35

Cumulative Mods

Figure 6: Failures vs. SLOC

0

1

2

3

4

5

6

7

8

9

10

0 500 1000 1500 2000 2500 3000 3500 4000

Cumulative SLOC

